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Rate Considerations in Deep Space Telemetry
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The relationship between transmission rate and source and channel signal-to-
noise ratios (SNRs) is discussed for the transmission of a Gaussian source over a

binary input, additive Gaussian channel, with a mean-squared distortion criterion.

We point out that for any finite rate, and sumciently high channel SNR, the fidelity
criterion (reproduction SNR) is upper bounded by a function of the transmission

rate. Thus, the performance becomes rate limited rather than power limited. This

effect is not observed with the binary symmetric source, the binary-input Gaussian
channel combination, or the Gauss/an source, unconstrained-input Gaussian channel
combination.

I. Introduction

The deep space communication channel uses binary phase shift keying (BPSK) modulation and is well

modeled as a binary input, additive white Gaussian noise (AWGN) channel model. It is usually accepted

that there is no bandwidth constraint in deep space communication application and that, for sufficiently
wide bandwidth usage, the full benefit of unconstrained bandwidth is essentially realized. While these

notions are correct, they must be viewed with caution. It does not necessarily follow that, for sufficiently

low overall transmission rate, there is little to be gained by further decreasing the rate. The interplay

between source and channel coding and the issue of coding complexity need to be considered. Depending
on the telemetry source and the available channel signal-to-noise ratio (SNR), there may be a significant
advantage in further decreasing the rate.

In this article, we review these notions in the context of a deep space communication system with

an independent identically distributed (i.i.d.) Gaussian source and a conventional BPSK, power-limited
channel, using mean-squared error (MSE) as a distortion criterion. While not an accurate model for

most deep space telemetry sources, the white Gaussian source is a useful reference model. Typical

telemetry data can be transformed by an (approximately) decorrelating orthogonal transformation, such
as the discrete cosine transform, producing data that can be approximated by parallel sources with white

(generalized) Gaussian distributions of different variances, one for each transform coefficient. Thus, the

combined source and channel coding of a white Gaussian source for transmission over the deep space
channel is a relevant exercise.

II. Preliminaries

The well-known equations governing transmission rate and source and channel SNRs were established

by Shannon in his seminal 1948 articles [1]. We refer to [2] as a source of notation. Figure 1 shows the
system under consideration.
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Fig. 1. Communication system model.

The capacity of a binary-input AWGN channel is given by

C(pzl ) = I - E_ [Iog2(I + e-2_)] (1)

where Pv = 2£u/No, £u is the available energy per channel symbol, No�2 is the two-sided noise spectral

density, and Eu denotes expectation over u, a random variable with distribution N(pu, pv).

The rate distortion function for an i.i.d. Gaussian source is given by

lln(6) = _ og 2 (2)

where 5 is the normalized MSE distortion. The reproduction SNR (RSNR) is given by 1/5.

III. Discussion

There are three variables of interest in this communication problem. They are

(1) 6, the normalized MSE distortion of reproduction at the receiver

(2) p_, the available channel SNR, given by p= = 2,f.x/No

(3) r, the overall transmission rate, measured in source samples per channel use

These quantities must satisfy the inequality

c(rp=)_> (3)

If the coding procedure is divided into a cascade of source and channel encoders, where the source is

first converted into a string of binary symbols, the rate r satisfies

lO



rc Rx
r -- -- (4)

r_ P_

where rs is the source code rate measured in bits per source sample, rc is the channel code rate in

information bits per channel use, R_ is the source rate in samples per second, and R_ is the channel rate
in channel uses per second. Considering that each bandwidth unit (Hertz) corresponds, by the Nyquist

sampling theorem, to two dimensions (channel uses) per second, we relate the bandwidth B to R_ by

B = RJ2.

Other channel SNRs of interest are Pb and p_, the signal-to-noise ratios available per information bit
and per channel use, respectively. We have selected p= for our considerations because it is desirable to

compare transmission schemes that use the same power and time to transmit each source sample. These

three SNRs are related by rpx = rcpb = py.

Substituting Eqs. (1) and (2) in Eq. (3), we can obtain the fundamental bound on RSNR given r and

Px:

where the distribution of u is now expressed as N(rp=,rp=). This bound is depicted in Fig. 2, where we

present plots of RSNR versus E=/No for different values of overall rate r. (We use E=/No instead of p= in

all the figures for consistency with [2] and other articles.)

In the limit as r --* 0, Eq. (5) becomes

1
- < e_ (6)
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Fig. 2. Bounds on performance for • binary Input channel with fixed r.
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Thus, as p= increases without bound, RSNR also may increase without bound. To increase p=, one

needs to alter the source transmission rate or the available power P. We have Px = P/Rx. Thus, p= can be

increased by reducing the source rate Rz. This in turn affects the overall rate, since r = Rx/Ry = R=/2B.

Alternatively, Px can be increased with an increase in P.

The noted unbounded growth in RSNR only occurs in the limit as r --* 0. For any positive value of r,

the upper bound on RSNR approaches a finite limit as p= increases. This occurs when p_ is large enough

to make the channel essentially noiseless. Since the channel is restricted to binary input, its capacity is

upper bounded by 1-bit-per-channel use. Thus, the RSNR is upper bounded by a function of the overall

rate: 1/6 < 2 (2/_). Since this bound can be arbitrarily smaller than the bound that prevails in the limit

as r ---, 0, Eq. (6), it is clear that the performance can greatly benefit from a decrease in overall rate (or

an increase in bandwidth when Rx is held constant).

As shown in [3], the binary input AWGN channel has essentially the same performance as the un-

constrained power-limited AWGN channel for low enough overall rates (e.g., less than 0.3 bit/channel

use) when used to communicate a binary symmetric source. Interestingly, the same observation cannot

be made for the case of communicating a Gaussian random variable, except in the limit as r _ 0. For

any positive value of r, which suggests a finite level of complexity, and sufficiently high Px, the binary

input channel will have its performance (RSNR) limited by rate rather than by power. This effect is not

observed in the unconstrained input AWGN case, where, for a fixed arbitrary rate, the upper bound on

RSNR grows to co as p= --* c_. Figure 3 compares, for various values of r, the unconstrained input and

binary input cases. (The dotted lines are asymptotes.)
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IV. Applicability

Under what circumstances might there be a lower bound on the overall rate r? This is a complicated

issue, but we can make a few observations. First, any real system must have some nonzero value of r.

Second, r clearly has some relationship to complexity, because r = rc/r,, and both lower-rate channel
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codes and higher-rate source codes generally imply higher complexity. Thus, a constraint on r can be

seen as a constraint on overall complexity. However, we can also consider the two components, rs and

re, separately. Fixing rs explicitly puts an upper bound on RSNR, resulting in the bounds shown in

Fig. 4. For this case, there is no difference between the unconstrained and binary input channels. Fixing
rc results in curves as shown in Fig. 5. Although a difference is seen between the unconstrained and

binary input channels, the curves all have the same exponential shape. So, the interesting phenomenon
described for fixed values of r (i.e., the different limiting behavior for binary input and unconstrained

channels) depends on a simultaneous bound on r_ and rc by fixing their ratio.

To see what implications this phenomenon might have, we must consider for which combinations of r,

RSNR, and p= it occurs. For a fixed value of r, the intercept of the asymptotes, as illustrated in Fig. 3,

is approximately where the effect becomes significant. This intercept occurs at 6 = 2-2/r and Px -- 4/r.
So, for instance, if r = 1/4, the effect becomes significant for RSNR > 24 dB and p= > 9 dB. While these

SNRs are certainly within the range of interest, it is hard to imagine reasonable circumstances requiring
r _> 1/4. For r = 1/16, which is known to be quite feasible for deep space communication, the effect

becomes significant for RSNR > 96 dB and p_ > 15 dB. These SNRs are probably outside the range of
interest of most missions.
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V, Performance Bounds With Fixed Channel SNR

Complexity is not the only reason that r = 0 is impossible. For a fixed Pz, r ---* 0 implies py ---, 0. Thus,
even if the computational complexity of a very low-rate channel code or very high-rate source code is not

a concern, the low SNR of the channel symbols might be. Although in theory py can be arbitrarily small

as long as C(py) > rR(_), in practice there is a lower bound on pu below which any given receiver cannot

perform symbol synchronization. Performance curves at constant py are shown in Fig. 6 for both the

unconstrained and binary input channels. Since the curves are all exponential, we see that the differing
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behavior between the unconstrained and binary input channels for fixed values of r is not due to a bound

on p_. It can also be seen from Fig. 6 that the performance difference between the unconstrained and

binary input channels is negligible for p_ < 0 dB.
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An efficient implementation of the forward-backward least-mean-square

(FBLMS) adaptive line enhancer is presented in this article. Without changing the
characteristics of the FBLMS adaptive line enhancer, the proposed implementation

technique reduces multiplications by 25 percent and additions by 12.5 percent in two

successive time samples in comparison with those operations of direct implemen-

tation in both prediction and weight control. The proposed FBLMS architecture

and algorithm can be applied to digital receivers for enhancing signal-to-noise ratio
to allow fast carrier acquisition and tracking in both stationary and nonstationary

environments.

I. Introduction

Adaptive line enhancers (ALEs) are useful in many areas, including time-domain spectral estimation
for fast carrier acquisition [2-4]. For example, a fast carrier acquisition technique [2], 1 as shown in Fig. 1,

will be very useful for a deep-space mission, especially in a nonstationary environment or emergencies.

Figure 1 is the block diagram of an ALE in a digital receiver used for both acquisition and tracking. First,
the receiver is in the acquisition mode. Second, when the uplink carrier is acquired as indicated by the lock

detector, the switch is shifted to the tracking position and the tracking process takes over immediately.

With this acquisition scheme, the uplink carrier can be acquired by a transponder in seconds (as opposed
to minutes for the Cassini transponder). Although devised to support a space mission, the architecture of

the forward-backward least-mean-square (FBLMS) ALE and the associated algorithm proposed in this

article are also applicable to other systems, including fixed-ground and mobile communication systems.
Note that this proposed ALE scheme in the receiver needs a residual carrier, and does not work directly

in suppressed-carrier cases.

A conventional ALE system using a least-mean-square (LMS) algorithm is depicted in Fig. 2, where

z -1 represents a delay. The analysis of the ALE for enhancing the signal-to-noise ratio (SNR) to allow

fast acquisition is given in [2]. The block diagram of a FBLMS adaptive line enhancer is shown in Fig. 3.

The performance analysis of the FBLMS adaptive line enhancer is provided in [1]. The FBLMS adaptive
line enhancer algorithm enjoys approximately half the misadjustment of that of the LMS algorithm [1].

l T. M. Nguyen, H. G. Yeh, and L. V. Lam, "A New Carrier Frequency Acquisition Technique for Future Digital Transpon-
ders," to be published in a future issue of The Telecommunications and Data Acquisition Progress Report.
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Fig. 2. The architecture of the conventional ALE.
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Fig. 3. The structure of the FBLMS adaptive line enhancer.

However, it requires about twice the number of multiplications and additions of the LMS algorithm. In

this article, an efficient implementation of the fast FBLMS algorithm is presented. This fast algorithm

provides the same speed of convergence as that of the LMS algorithm and provides the same misadjustment

as that of the FBLMS adaptive line enhancer, but requires fewer multiplications and additions. The

computational reduction is achieved by grouping two successive predictor computations together and

computing weight adaption at every other sampling time [5]. By using a radix-2 structure to manipulate

time samples, redundant computations embedded in two successive time samples can be removed via a

new structure of the fast FBLMS algorithm.

This article is organized as follows. The FBLMS algorithm is reviewed in Section II. The fast FBLMS

algorithm is derived and proposed in Section III. The fast FBLMS algorithm implementation is given in

Section IV and simulation results are presented in Section V. Finally, the conclusion is given in Section VI.

II. Forward-Backward LMS Adaptive Line Enhancer Algorithm

The structure of the forward-backward LMS adaptive line enhancer [1] is shown in Fig. 3. The forward

and backward prediction errors are then defined, respectively, as follows:
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